

Binomial Theorem

Exercise

- (b) $\frac{504}{289}$
- (d) None of these

The number of terms in the expansion of

- $(1+5\sqrt{2}x)^9+(1-5\sqrt{2}x)^9$ is
- (a) 5

(b) 7

(c) 9

The value of $\sum_{k=0}^{n} (-1)^{k} {}^{n}C_{k}$ is

- (a) -1
- (b) 2^{k}

- (c) 2^n
- (d) 0

If the 4th term in the expansion of $\left(ax + \frac{1}{x}\right)^n$ is 5/2, then the values of a and n are

- (a) $\frac{1}{2}$, 6
- (b) 1, 3
- (c) $\frac{1}{2}$,3
- (d) cannot be found

If the coefficients of second, third and fourth terms in the expansion of $(1 + x)^{2n}$ are in AP, then

- (a) $2n^2 + 9n + 7 = 0$
- (b) $2n^2 9n + 7 = 0$
- (c) $2n^2 9n 7 = 0$
- (d) None of these

If the coefficients of (2r + 4)th and (r - 2)th terms in the expansion of $(1 + x)^{18}$ are equal, then the value of r is

(a) 5

(b) 6

(c) 7

(d) 9

The middle term in the expansion of $\left(x + \frac{1}{x}\right)^{10}$ is

- (a) ${}^{10}C_1.\frac{1}{r}$
- (b) ${}^{10}C_5$

(c) $^{10}\mathrm{C}_6$ (d) $^{10}\mathrm{C}_7 x$ The sum of the coefficients of the polynomial $(1+x-3x^2)^{21430}$ is

- (a) -1
- (b) 1

(d) None of these

9. If the coefficient of (r + 1)th term in the expansion of $(1+x)^{2n}$ be equal to that of (r+3)th term, then

- (a) n-r+1=0
- (b) n-r-1=0
- (c) n+r+1=0
- (d) None of these

10. If n is even, then the greatest coefficient in the expansion of $(x + a)^n$ is

- (a) ${}^{n}C_{\frac{n}{2}+1}$
- (b) ${}^{n}C_{\frac{n}{2}-1}$
- (c) ${}^{n}C_{\underline{n}}$
- (d) None of these

11. If *n* is even and *r*th term has the greatest coefficient in the binomial expansion of $(1 + x)^n$, then

- (a) $r = \frac{n}{2}$
 - (b) $r = \frac{n}{2} + 1$
- (c) $r = \frac{n}{2} 1$
- (d) None of these

12. If C_0 , C_1 , C_2 ,..., C_n denote the coefficients in the expansion of $(1+x)^n$, then the value of $\sum_{r=1}^n rC_r$ is

- (a) $n \cdot 2^{n-1}$
- (b) $(n+1)2^n$
- (c) $(n+1) \cdot 2^{n-1}$
- (d) $(n+2) \cdot 2^{n-1}$

13. If C_0 , C_1 , C_2 ,..., C_n denote the binomial coefficients in the expansion of $(1 + x)^n$, then the value of

$$\sum_{r=0}^{n} (r+1) C_r \text{ is}$$

Binomial Theorem

55

- (a) $n \, 2^n$
- (b) $(n+1)2^{n-1}$
- (c) $(n+2)2^{n-1}$
- (d) $(n-2)2^{n-1}$
- 14. The expression $[x + (x^3 1)^{1/2}]^5 + [x (x^3 1)^{1/2}]^5$ is a polynomial of degree
 - (a) 5

(b) 6

(c) 7

- (d) 8
- 15. The coefficient of x^3 in $\left(\sqrt{x^5} + \frac{3}{\sqrt{x^3}}\right)^3$ is
 - (a) 0

- (b) 120
- (c) 420
- (d) 540
- 16. The greatest coefficient in the expansion of $(1 + x)^{10}$ is
 - (a) $\frac{10!}{5! \, 6!}$
- (b) $\frac{10!}{(5!)^2}$
- (c) $\frac{10!}{5! \, 7!}$
- (d) None of these
- 17. The coefficient of x^{53} in the expansion

$$\sum_{m=0}^{100} {}^{100}C_m(x-3)^{100-m}.2^m \text{ is}$$

- (a) $^{100}C_{47}$
- (a) C_{47} (b) C_{53} (c) $-^{100}C_{53}$ (d) $-^{100}C_{100}$
- 18. The term independent of x in $\left[\sqrt{\frac{x}{3}} + \sqrt{\frac{3}{2x^2}}\right]^{10}$ is
 - (a) term does not exist (b) $^{10}C_1$
- - (c) $\frac{5}{12}$
- (d) 1
- 19. If the rth term in the expansion of $\left(\frac{x}{3} \frac{2}{x^2}\right)^{10}$ contains x^4 then r is equal to
 - (a) 2
- (b) 3

- (c) 4
- (d) 5
- 20. The 14th term from the end in the expansion of $(\sqrt{x} - \sqrt{y})^{17}$ is
 - (a) ${}^{17}C_5x^6(-\sqrt{y})^6$
 - (b) ${}^{17}C_{\epsilon}(\sqrt{x})^{11}v^3$
 - (c) $^{17}C_4x^{13/2}v^2$
- (d) None of these
- 21. The first four terms in the expansion of $(1-x)^{3/2}$ are
 - (a) $1 \frac{3}{2}x + \frac{3}{8}x^2 + \frac{1}{16}x^2$ (b) $1 \frac{3}{2}x + \frac{3}{8}x^2 \frac{1}{16}x^3$
 - (c) $1 \frac{3}{2}x + \frac{3}{8}x^2 + \frac{1}{16}x^3$ (d) None of the above
- 22. The number of terms in the expansion of $(x + y + z)^{10}$ is
 - (a) 11
- (b) 33

- (c) 66
- (d) 1000

- 23. In the expansion of $\left(x^2 \frac{1}{3x}\right)^9$, the term without x is equal to
 - (a) $\frac{28}{81}$
- (b) $\frac{-28}{243}$
- (d) None of these
- 24. The number of terms in the expansion of $(1 + 5x + 10x^2)$ $+10x^3 + 5x^4 + x^5)^{20}$ is
 - (a) 100
- (b) 101
- (c) 120
- (d) None of these
- 25. If $(1 x + x^2) = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$ then $a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$ $a_2 + a_4 + \dots a_{2n}$ equals:
 - (a) $\frac{3^n+1}{2}$ (b) $\frac{3^n-1}{2}$
- - (c) $\frac{1-3^n}{2}$
- (d) $3^n + \frac{1}{2}$
- 26. In the expansion of $(1+x^2)^{40} \left(x^2+2+\frac{1}{x^2}\right)^{-5}$ the coefficient of x^{20} is
 - (a) ${}^{30}C_{10}$
- (b) 1
- (c) $^{30}C_{10}$
- (d) None of these
- 27. The coefficient of x^5 in the expansion of $(1+x^2)^4 (1+x)^4$ is
 - (a) 30
- (b) 60
- (c) 40

- (d) none of these
- 28. If $(1+x)^n = \sum_{r=0}^{n} C_r x^r$, then

$$\left(1+\frac{C_1}{C_0}\right)\left(1+\frac{C_2}{C_1}\right).....\left(1+\frac{C_n}{C_{n-1}}\right)$$
 is equal to

- (a) $\frac{n^{n-1}}{(n-1)!}$
- (b) $\frac{(n+1)^{n-1}}{(n-1)!}$
- (c) $\frac{(n+1)^n}{n!}$
- (d) $\frac{(n+1)^{n+1}}{1}$
- 29. The coefficient of the term independent of x in the expansion of $\left(ax + \frac{b}{x}\right)^{14}$ is
 - (a) $14! a^7 b^7$
- (b) $\frac{14!}{7!}a^7b^7$
- (c) $\frac{14!}{(7!)^2}a^7b^7$ (d) $\frac{14!}{(7!)^3}a^7b^7$
- 30. $aC_0 + (a+b)C_1 + (a+2b)C_2 + \dots + (a+nb)C_n$ is equal
 - (a) $(2a + nb)2^n$ (c) $(na + 2b)2^n$
- (b) $(2a + nb)2^{n-1}$

	ANSWERS																		
1.	(d)	2.	(a)	3.	(d)	4.	(a)	5.	(b)	6.	(b)	7.	(b)	8.	(b)	9.	(b)	10.	(c)
11.	(b)	12.	(a)	13.	(c)	14.	(c)	15.	(d)	16.	(b)	17.	(c)	18.	(a)	19.	(b)	20.	(c)
21.	(c)	22.	(c)	23.	(c)	24.	(b)	25.	(a)	26.	(c)	27.	(c)	28.	(c)	29.	(c)	30.	(b)

Explanations

1. (d) General term in the expansion of $\left(\frac{3}{2} - \frac{3}{x^2}\right)^{10}$ is $T_{r+1} = {}^{10}C_r \left(\frac{3}{2}\right)^{10-r} \left(\frac{-3}{x^2}\right)^r$ $= (-1)^{r} {}^{10}C_r \frac{(3)^{10}}{2^{10-r}} . x^{-2r}$

For the coefficient of x^{-4} , put -2r = -4 $\Rightarrow r = 2$

So, coefficient of $x^{-4} = (-1)^2 {}^{10}C_2 \frac{(3)^{10}}{2^8}$ = ${}^{10}C_2 \frac{3^{10}}{2^8}$

- 2. (a) $(1+5\sqrt{2}x)^9$ has 10 terms out of which 5 terms cancel out with the 5 terms of $(1-5\sqrt{2}x)^9$ \therefore Total number of terms on simplification = 5
- 3. (d) $(1+x)^n = {}^nC_0 + {}^nC_1 + {}^nC_2x^2 + {}^nC_3x^3 + \dots {}^nC_nx^n$ Put x = -1 $0 = {}^nC_0 {}^nC_1 + {}^nC_2 + {}^nC_3 + \dots {}^nC_n$ So, $\sum_{k=0}^{n} (-1)^k {}^nC_k = 0$
- 4. (a) In the expansion of $\left(ax + \frac{1}{x}\right)^n$, $T_4 = \frac{5}{2}$ $\Rightarrow {}^{n}C_3 (ax)^{n-3} \left(\frac{1}{x}\right)^3 = \frac{5}{2}$ ${}^{n}C_3 a^{n-3} x^{n-6} = \frac{5}{2}$

On comparing, $n - 6 = 0 \Rightarrow n = 6$

and ${}^{n}C_{3} a^{n-3} = \frac{5}{2}$

 $\frac{n!}{3!(n-3!)}a^{n-3} = \frac{5}{2}$ {:: n = 6}

 $a^{6-3} = \frac{1}{8} \Rightarrow a^2 = \frac{1}{8} \Rightarrow a = \frac{1}{2}$

5. (b) Coefficients of T_2 , T_3 , T_4 are in A.P. $\Rightarrow 2T_3 = T_2 + T_4 \Rightarrow 2.^{2n}C_2 = {^{2n}C_1} + {^{2n}C_3}$

$$\Rightarrow 2 \cdot \frac{(2n)!}{2!(2n-2)!} = \frac{(2n)!}{1!(2n-1)!} + \frac{(2n)!}{3!(2n-3)!}$$

$$\Rightarrow \frac{1}{2n-2} = \frac{1}{(2n-1)(2n-2)} + \frac{1}{6}$$

$$\Rightarrow 2n^2 - 9n + 7 = 0$$

6. (b) Coefficient of (2r + 4)th and (r - 2)th terms are equal in the expansion of $(1 + x)^{18}$.

$$^{18}C_{2r+3} = ^{18}C_{r-3} \qquad \{ :: {}^{n}C_{x} = ^{n}C_{y} \Rightarrow x + y = n \}$$

\Rightarrow (2r+3) + (r-3) = 18 \Rightarrow r = 6

7. (b) Here, n = 10

So, middle term = $\frac{10}{2} + 1 = 6$ th term

$$T_{5+1} = {}^{10}C_5(x){}^{10-5} \left(\frac{1}{x}\right)^5 = {}^{10}C_5$$

- 8. (b) For the sum of coefficients, put x = 1. So, sum of coefficients = $(1 + 1 - 3)^{21430} = 1$
- 9. (b) Coefficient of (r + 1)th term = Coefficient of (r + 3)th term = ${}^{2n}C_r = {}^{2n}C_{r+2}$ $\Rightarrow r + r + 2 = 2n \Rightarrow n - r - 1 = 0$
- 10. (c) If *n* is even, then number of terms (n + 1), i.e., odd. So, greatest coefficient = Middle term coefficient i.e., $\left(\frac{n}{2}+1\right)$ th term coefficient So, greatest coefficient = ${}^{n}C_{n/2}$
- 11. (b) Same as above,

Greatest term = $\left(\frac{n}{2} + 1\right)^{\text{th}}$ term

So,
$$T_{(r-1)+1} = {}^{n}C_{\underline{n}}x^{\frac{n}{2}}$$

$$\Rightarrow r-1 = \frac{n}{2} \Rightarrow r = \frac{n}{2} + 1$$

12. (a) $\sum_{r=1}^{n} r^{n} C_{r}$

$$\because \frac{{}^{n}C_{r}}{{}^{n-1}C_{r-1}} = \frac{n}{r}$$

Binomial Theorem 57

So,
$$\sum_{r=1}^{n} r^{n} C_{r} = \sum_{r=1}^{n} n \cdot {}^{n-1} C_{r-1}$$

= $n \sum_{r-1=0}^{n} {}^{n-1} C_{r-1} = n \cdot 2^{n-1}$

13. (c)
$$\sum_{r=0}^{n} (r+1)^{n} C_{r}$$

$$= \sum_{r=0}^{n} r^{n} C_{r} + \sum_{r=0}^{n} {^{n}C_{r}}$$

$$= n \cdot 2^{n-1} + 2^{n} = 2^{n-1}(n+2)$$

14. (c) Let
$$\sqrt{x^3 - 1} = y$$

Now, given expression = $(x + y)^5 + (x - y)^5$
= $2[x^5 + {}^5C_2x^3y^2 + {}^5C_4xy^4]$
= $2[x^5 + 10x^3(x^3 - 1) + 5x(x^3 - 1)^2]$
 \therefore Degree of the polynomial = Highest power of $x = 7$

15. (d)
$$T_{r+1} = {}^{6}C_{r} (\sqrt{x^{5}})^{6-r} \left(\frac{3}{\sqrt{x^{3}}}\right)^{r}$$
$$= {}^{6}C_{r} (3)^{r} (x)^{\frac{30-8r}{2}}$$

For coefficient of x^3 , put $\frac{30-8r}{2} = 3$ $\Rightarrow r = 3$

Hence, coefficient of $x^3 = {}^6C_3$ $3^3 = 540$

16. (b) Greatest coefficient in
$$(1 + x)^{10}$$

= Middle term coefficient
= $\left(\frac{10}{2} + 1\right)$ th = 6th term coefficient
= ${}^{10}C_5 = \frac{10!}{(5!)^2}$

17. (c)
$$\sum_{m=0}^{100} {}^{100}C_m (x-3)^{100-m} \cdot 2^m = (x-3+2)^{100}$$
$$= (x-1)^{100} = (1-x)^{100}$$
Coefficient of $x^{53} = -{}^{100}C_{53}$

18. (a)
$$T_{r+1} = {}^{10}C_r \left(\sqrt{\frac{x}{3}}\right)^{10-r} \left(\sqrt{\frac{3}{2x^2}}\right)^{2r}$$

= ${}^{10}C_r = \frac{(\sqrt{3})^{2r-10}}{(\sqrt{2})^r} (x)^{\frac{10-3r}{2}}$

For term independent of x, put $\frac{10-3r}{2} = 0$

$$\Rightarrow r = \frac{10}{3}$$

It is not possible.

So, there exists no term independent of x.

19. (b)
$$T_{(r-1)+1} = {}^{10}C_{r-1} \left(\frac{x}{3}\right)^{10-r+1} \left(-\frac{2}{x^2}\right)^{r-1}$$

$$= {}^{10}C_{r-1} \frac{(-2)^{r-1}}{(3)^{11-r}}.x^{13-3r}$$

For term containing x^4 , Put $13 - 3r = 4 \Rightarrow r = 3$

20. (c) Here, n = 17So, number of terms = 17 + 1 = 1814th term from last = (18 - 14 + 1)th term from starting = 5th term from starting So, $T_{4+1} = {}^{17}C_4 (\sqrt{x})^{13} (-\sqrt{y})^4 = {}^{17}C_4 x^{13/2} y^2$

21. (c)
$$(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{2!}$$

$$+\frac{n(n-1)(n-2)x^3}{3!}+...$$

So,
$$(1-x)^{3/2} = 1 - \frac{3}{2}x + \frac{\frac{3}{2}(\frac{3}{2}-1)x^2}{2!} - \frac{(\frac{3}{2})(\frac{3}{2}-1)(\frac{3}{2}-2)x^3}{31}$$

$$=1-\frac{3x}{2}+\frac{3x^2}{8}+\frac{x^3}{16}$$

22. (c) Number of terms =
$$\frac{(n+1)(n+2)}{2}$$
 {Put $n = 10$ }
= $\frac{11 \times 12}{2} = 66$

23. (c)
$$T_{r+1} = {}^{9}C_{r}(x^{2})^{9-r} \left(-\frac{1}{3x}\right)^{r} = \left(-\frac{1}{3}\right)^{r} {}^{9}C_{r}x^{18-3r}$$

For term without x, put 18 - 3r = 0 $\Rightarrow r = 6$

So, term without
$$x = \left(-\frac{1}{3}\right)^6 \, {}^9C_6 = \frac{28}{243}$$

24. (b)
$$(1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5)^{20}$$

= $[(1 + x)^5]^{20}$
= $(1 + x)^{100}$

So, number of terms = 101

25. (a) Given
$$(1 - x + x^2)^n = a_0 + a_1 x + a_2 x^2 + ... + a_{2n} x^{2n}$$

Putting $x = 1$ and -1 and adding, we get
$$1 + 3^n = 2 (a_0 + a_2 + ... + a_{2n})$$

$$\Rightarrow a_0 + a_2 + ... + a_{2n} = \frac{3^n + 1}{2}$$

26. (c)
$$(1+x^2)^{40} \left(x^2+2+\frac{1}{x^2}\right)^{-5}$$

$$= (1+x^2)^{40} \left\{ \left(x + \frac{1}{x} \right)^2 \right\}^{-5}$$
$$= (1+x^2)^{40} \frac{(1+x^2)^{-10}}{x^{-10}} = x^{10} (1+x^2)^{30}$$

For the coefficient of x^{20} , we have to get the coefficient of x^{10} in the expansion of $(1 + x^2)^{30}$ which is 30 C₅.

$$\therefore {}^{n}C_{r} = {}^{n}C_{n-r}$$

So, coefficient of x^{20} is ${}^{30}C_{25}$.

27. (c)
$$(1+x^2)^4 (1+x)^4$$

= $({}^4C_0 + {}^4C_1x^2 + {}^4C_2x^4 + {}^4C_3x^6 + {}^4C_4x^8)$
+ $({}^4C_0 + {}^4C_1x + {}^4C_2x^2 + {}^4C_3x^3 + {}^4C_4x^4)$

So, coefficient of x^5 = ${}^4C_1 \cdot {}^4C_3 + {}^4C_2 \cdot {}^4C_1 = 40$

28. (c)
$$\frac{{}^{n}C_{r}}{{}^{n}C_{r-1}} = \frac{n-r+1}{r}$$
Putting $r = 1, 2, 3, ... n$

$$\frac{C_{1}}{C_{0}} = \frac{n}{1}, \frac{C_{2}}{C_{1}} = \frac{n-1}{2}, \frac{C_{3}}{C_{2}} = \frac{n-2}{3},$$

$$\begin{pmatrix} 1 + \frac{C_1}{C_0} \end{pmatrix} \left(1 + \frac{C_2}{C_1} \right) \left(1 + \frac{C_3}{C_2} \right) \dots \left(1 + \frac{C_n}{C_{n-1}} \right)$$

$$= \left(1 + \frac{n}{1} \right) \left(1 + \frac{n-1}{2} \right) \left(1 + \frac{n-2}{3} \right) \dots n \text{ factors}$$

$$= \left(\frac{n+1}{1} \right) \left(\frac{n+1}{2} \right) \left(\frac{n+1}{3} \right) \dots n \text{ factors}$$

$$= \frac{(n+1)^n}{n!}$$

29. (c)
$$T_{r+1} = {}^{14}C_r (ax)^{14-r} \left(\frac{b}{x}\right)^r$$

= ${}^{14}C_r a^{14-r} \cdot b^r x^{14-2r}$

For term independent of x, put r = 7So, coefficient of the term independent of x

$$= {}^{14}\text{C}_7 a^7 b^7 = \frac{14!}{(7!)^2} (ab)^7$$

30. (b)
$$aC_0 + (a+b) C_1 + (a+2b) C_2 + ... + (a+nb) C_n$$

 $= a\{C_0 + C_1 + C_2 + ... C_n\}$
 $+ b\{C_1 + 2C_2 + 3C_3 + ... nC_n\}$
 $= a.2^n + b \cdot n \cdot 2^{n-1} = (2a+nb)2^{n-1}$